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SUMMARY 

This paper gives the results of an application of the SWEs (shallow water equations) to  a part of the 
Hamburg harbour area, which is a complex flow domain, using the BFG approach, outlined in Part I. 
The results of a grid doubling procedure generating the desired computational grid from a coarse initial 
mesh are also presented. A second class of problems which is addressed, demands time-dependent co-ordinate 
systems. The problems which are solved are the free surface problem for a moving wave which eventually 
breaks and for a wave which is reflected by the solid walls of a rectangular basin. 

KEY WORDS Shallow Water Equations Boundary Fitted Grids Time Dependent Solution Domains Free Surface 
Problems 

INTRODUCTION 

The present paper is concerned with the solution of fluid flow problems using boundary fitted 
co-ordinates. To show the use of BFGs for two-dimensional internal flows, several complex flow 
domains have been modelled. First, simulation results for a section of the Hamburg harbour 
area are presented. This area is geometrically very complex and is therefore well suited as an 
example demonstrating the capabilities of BFGs. 

A second set of problems was calculated in order to see how time-dependent solution areas 
can be described. Two free surface problems were chosen, namely the breaking wave problem, 
first solved by Haussling,' and the reflection of a wave in a rectangular basin. Because of the 
boundary condition at the free surface, these problems are non-linear. When the wave begins 
to break, the grid is severely distorted and computations become meaningless. 
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SOLUTION O F  THE SHALLOW WATER WAVE EQUATIONS 

First, the SWEs are considered which describe the flow field and the water level in an inviscid 
rotating ocean under the assumption that the wavelength is much larger than the elevation from 
the still water level. In Cartesian co-ordinates the equations read 

au au au ah 
- + + - + v - - f v =  -9- 
at ax ay ax9 
a v  av av ah 
- + u - + v - + f u =  -g-, 
at ax ay aY 

where u, v denote horizontal velocity components, h is water level and D is total water depth. 
If du/dt >> (u.V)u and D 2 H ,  equations (1) can be linearized by replacing D by H and omitting 
the convective terms. 

Introduction of transports U :  = u H ,  V :  = vH yields 

au ah 
- + gH-  - f V  = 0, 
at ax 

av ah 
- + g H -  + f U  = 0, 
at dY 

ah  au av 
at ax ay 
- + -+ -= 0. 

Three initial conditions are necessary for equations (2). We choose initial conditions for U ,  V 
and h. For solid walls it is required that the normal velocity component vanishes, i.e. U,=O. 
For open boundaries, i.e. boundaries which separate the solution area from the rest of the ocean, no 
physical boundary conditions can be specified. Therefore, the transient water level h is prescribed. 
This requires, however, that open boundaries be separated far enough from each other so that 
inaccuracies of the measured water levels do not cause unrealistic flow fields. 

If the boundary moves, we demand uD = 0, which is satisfied for D = 0, i.e. the total water 
depth vanishes. This property can be used to determine the variation of the shoreline in the 
course of time. Hence dry running areas can also be modelled, e.g. Reference 2. The shallow 
water equations can be solved analytically for a rectangular basin of constant depth as well as 
for circular basins of constant and parabolic depth variation. Extensive comparisons of analytical 
and numerical results, along with comparisons between BFG models and conventional finite 
difference models using rectangular grids are found in Reference 3. 

+* Free water surface x,y still water level 

Figure 1. Co-ordinate system for shallow water equations: h = surface elevation; D = water depth; H = still water depth 



BOUNDARY CONFORMED CO-ORDINATE SYSTEMS, PART I1 53 1 

Introducing the vectors u = ( U ,  V, O ) = = ( U , ,  u2 ,  O)T and f = ( O ,  0, , f ) ’ r ,  the momentum 
equations (2) can be written in the form 

or 

aui ah - + + H - + ( f  x u) i=o ,  
at ax i  (3) 

u ~ , ~  + gHh.i + t i J k f j u k  = 0, 

where the nomenclature of section 3 of Part I4 has been used. The respective covariant form is 

(4) 
where ui, uk are covariant and contravariant components. In generalized co-ordinates equations (2) 
take the following form, where the first two equations follow directly from (4) and the third one is 
obtained from (29) in Part I which gives the general form of the divergence: 

U i , ,  + +Hh.i + JgtijkfJUk = 0, 

-gliui a + g H - -  ah & f U 2  = 0, 
at a x ,  
a ah 
-g2iUi+gH-++fu1 =o, 
at 3x2 

- + U.!) = - + Ufi  + PikUk = 0. 
at at 

ah . ah . 

If one wishes to retain the Cartesian velocity components, equations (2) can be transformed 
by use of the chain rule, which yields 

- + g H - - f V = - + g H  au ah au (y: ~ + ”’”) - f v  = 
at ax at aV ax 

= 0, 

av  1 
-+gH-(-h.,x,+ h.,Xg)+fU =O,  
at J 

ah 1 
at J 

au 1 
- + SHJ(h ,<Y ,  - h.,Y,) - f V  at 

(6 )  

~ + -( u,;y, - u., y ,  - V.<X, + V,,X<) = 0. 

Derivatives can be brought into a conservative form by adding a term ,f(y;,-y,;)=O, 
where f is a function of x ,  e.g. 

where the first form is non-conservative and the second is the conservative one. For the analytical 
solution the two schemes are equivalent. Numerically the schemes are different, since, dependent 
on the discretization, the order of the derivation cannot be interchanged for second derivatives. In  
Reference 5 it was reported that a conservative scheme yields more accurate results. Test 
calculations for an annular ring revealed that in this case the non-conservative scheme was more 
ac~ura t e .~  As a BC it is required that the normal transport component U ,  vanishes at solid walls. 
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Since inviscid flow is considered, the tangential transport need not vanish. By use of equations (2), 
one obtains for Ui and U ,  

Since the staggered grid is chosen such that only velocity points lie on the boundary, the first 
of equations (8) is not needed. In order to calculate the Cartesian UV-components of the 
tangential transport, the angle $ is introduced, which is the angle of rotation between the 
Cartesian x-y and the 2-il co-ordinate systems and is defined by 

2 =  ( x ' )  = (- ;:s+) 
J(x'2 + y'2) y' (9) 

where the prime denotes the partial derivative with respect to either 5 or q, since boundary 
curves are parametrized by either variable. Hence, the equations on the boundary take the form 

= O ,  

av 
at 

The above equations are discretized by replacing the time derivatives by forward differences, 
and the space derivatives by central differences. The discretized transformed SWEs are of the form 

- xqi,j(V+ 1 ,  j - Vl- 1 . j )  + x<i, j(Vl, j +  1 - V , j -  1)1 = 0. 
Under the assumption that a solution is formed by plane waves, the integration in time must 
not amplify the wave amplitudes, otherwise the scheme is unstable. Explicit schemes often have 
the advantage of smaller phase error in comparison with implicit schemes, but are limited by 
the allowable time-step size. In the following the results of the stability analysis for equations (1 1) 
are presented, where the error introduced by interpolation on the staggered grid of, e.g. aU/ax, 
to the location of an h-point is not accounted for. Furthermore, it is assumed that metric 
coefficients are locally constant. Inserting the plane wave formulation 

in the discretized equations (1 l), denoting the grid spacing by A and assuming f = 0 (no Coriolis 
force), one finally obtains the dispersion relation for the explicit scheme (U  and V values taken 
at time step n) where coswz is replaced by 1 - 0 2 z 2 / 2  (that is wz << 1 is assumed) 
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Figure 2. Exploded view of an 18 segment area which is part of the Hamburg harbour region. The shallow water wave 
equations for constant water depth have been solved on this solution domain 

m25- J(gH) J(gll sin’kA + 2g” sin kAsin 1A + g’’ sin2 1A). (13) A 

For the semi-implicit scheme, where U and V values are taken at time step n + 1, the r.h.s. of 
equation (1 3) is multiplied by J2. In Cartesian co-ordinates the dispersion relations reduce (in the 
one-dimensional case) to the well-known formulae 

for the explicit and semi-implicit schemes, respectively. Waves of wavelength 2 8  are stationary 
as observed from equation (14). Only waves of longer wavelength are propagated with a phase 
speed depending on the wavelength. A wave packet is therefore dispersed in the course of time. 
The case of strongly varying coefficients in space may invalidate the above analysis,6 and 
refraction and reflection of waves must be expected. It is well known, that the order of a scheme 
is reduced for variable coefficients. Numerical errors grow with l/sin8 where 0 is the angle of 
intersection between co-ordinate lines. Large variations of the aspect ratio may have the same 
effect. Without proof, we state that the above scheme is unstable if the Coriolis terms are 
computed at time step n. If the values are taken at n + 1, the scheme is stable provided the time 
step size is properly chosen. 

Figure 2 depicts the segment structure of the initial grid for the Hamburg harbour area and 
in Figure 3 the effect of the grid doubling algorithm is shown.14 

Although the stability analysis shows that the simple numerical scheme used is stable, and 
numerical experiences for an annular ring demonstrated the stability of the scheme even after 
1000  period^,^ the scheme became unstable for the complex Hamburg harbour area (Figure 4) 
after some 15,000 time steps, which is equivalent to 24 hours of simulation time. This is most 
likely due to the type of staggered grid used, since U ,  V values are computed at the same location. 
This scheme worked well in Reference 2 where the SWEs were solved on an annular ring with 
large Coriolis coefficients, and excellent agreement with the analytic solution was obtained. 
Problems with an implicit scheme are reported in Reference 7. Implicit schemes are much 
more laborious to program for composite grids, since larger overlaps are necessary. 

The instability could not be eliminated by filtering,839 although linear filtering was successfully 
used to damp the non-linear instabilities of the free surface problem (Figure 5) which arise from the 
non-linear boundary conditions. Since the free surface problem was described in Reference 1 and 
10, it is only briefly discussed here. 
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Figure 3.(n) Shows the initial coarse grid for the Hamburg harbour area; (b) refined grid after first doubling; (c) final grid 
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Figure 4. Calculated flow field for a part of the Hamburg harbour area. I t  was assumed that the solution area is of 
constant depth. This, however, does not simplify the equations since variable coefficients are introduced by the 

transformation 

To simplify the continuity and momentum equations, we assume the fluid to be incompressible 
and inviscid. It is further assumed that the fluid is irrotational. Since the rotation of a gradient 
always vanishes, a velocity potential 4 can be introduced, where v = V 4 .  Insertion into the 
continuity equation leads to Laplace’s equation 

A 4  = 0. (15) 

(16) 

The velocity potential has to satisfy the following BCs: 

(i) At solid boundaries: V,, = V 4 . n  = 0 where n is the unit normal vector. 
(ii) At the free surface (dynamical BC): since the interface (water-air) has no mass, the forces, i.e. 

the pressures at both sides, must be equal; hence p = p o  where p o  is (constant) air pressure. If 
the Euler equations are solved for p and V x v = 0 is used, this yields 

2 = - + ( v ~ . v $ )  + gz, on s (free surface), (17) at 

where p o  was set to zero and gz accounts for gravity. 
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(iii) At  left and right sides (see Figure 5): constant velocities are prescribed, since the co-ordinate 
system moves with velocity v, with respect to the bottom of the solution domain. This 
condition prevents the wave running out of the solution area 

v4 = - v,. 

(iv) Computation of the location of unknown free surface: the free surface is defined by the 
property that fluid does not cross it, i.e. the normal velocity component of the fluid with 
respect to the free surface must be equal to the normal velocity component of the moving 
free surface. After some algebraic manipulation this finally leads to the (obvious) result 

dxldt =V+,  on S, (19) 
where x is the position vector of a fluid particle on the free surface. 

(v) The grid is generated from 

A ( = P ;  A q = Q  +BCs. (20) 
Although the Laplace equation has to be solved, the problem is non-linear because of the 
above BCs. 

Along with (i)-(iv), the transformed grid generation equations indicated in (v), (Part I ,  
equations (47) and (48)) have to be solved. The BCs for this system are obtained from the 
computed co-ordinates resulting from the wave movement. 

In Figure 6,  where the reflection of a wave by solid walls is considered, Dirichlet conditions 
are not allowed for the grid generation equations at left and right boundaries. Rather, Neuman 
conditions have to be prescribed such that boundary points can move with the water level. 

For the transformation of the above equations the time dependence (Part I, equations (32)) 
has to be accounted for. In the computational plane, the co-ordinate system is fixed. 

The computations are performed in the following order. First, initial distributions for the 
velocity potential 4 and the free surface are needed. Here the solution of the Korteweg-de Vries 
equation is used" which describes a soliton and gives expressions for the surface elevation h 
and for + on the free surface. The initial distributions for 4 as well as for 5 and q are found 
by numerical integration using the respective equations. The solution has the advantage that i t  
represents only a small peak, so that BC (iii) is satisfied. Of course, the soliton solution is not 
stable since in our case the full non-linear equations are solved. 

From (iv) the new shape and location of the free surface are determined and from the dynamical 
BCs (ii) the new velocity potential 4 at the free surface is found. 

Employing this new geometry, the new co-ordinate system is constructed solving the equations 
in (v). With that, A 4  = 0 can be solved along with the BCs (i) and (iii). After that, the next time 
step can be calculated. 

CONCLUSIONS AND OUTLOOK 

In this paper a description of the use of BFGs is given along with the application of these 
techniques to three time-dependent problems in CFD. As an example problem in this paper the 
application of the BFG method to the SWEs for a complex two-dimensional solution domain 
was studied. Stability problems were encountered after some 15,000 time steps for the explicit 
scheme. I t  is believed that the instability is caused by the type of staggered grid used. The 
instability was not removed by linear filtering. 

It  will be tested whether predictor-corrector schemes as, for example, described in Reference 12 
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will yield better results for the SWEs. Since these schemes are in delta form, the use of a multigrid 
method could be considered. 

Two non-linear problems with time dependent geometry, namely the breaking wave problem 
and the reflection of a wave by solid walls were successfully modelled, demonstrating that BFGs 
are capable of handling complex flow domains. 

ACKNOWLEDGEMENT 

The authors are grateful for NATO research grant 681/84 and also for support by GKSS- 
Research-Center. 

This paper is dedicated to the 85th birthday of Prof. W. Hanle, I. Physikalisches Institut, 
Universitat Giessen, Germany. 

REFERENCES 

I .  H. J. Haussling, ‘Solution of nonlinear water wave problems using boundary-fitted coordinate systems’, in J. F. 

2. P. Petersen et al., ‘An error minimizing scheme for the nonlinear shallow water equations with moving boundaries’, in 

3. J. Hauser, H. G. Paap, D. Eppel and A. Mueller, ‘Solution of shallow water equations for complex flow domains via 

4. J. Hauser, H.G.  Paap, D. Eppel and S. Sengupta, ‘Boundary conformed coordinate systems for selected two- 

5. B. H. Johnson, ‘Numerical modelling of estuarine hydrodynamics on a boundary fitted coordinate systems’, in J. F. 

6. C. W. Mastin, ‘Error induced by coordinate systems’, in J. F. Thomson (ed.) Numerical Grid Generation, North 

7. B. H. Johnson, ‘Numerical modelling of free surface hydrodynamics on curvilinear grids’, in J. F. Thomson (ed.) Short 

8. R. Shapiro, ‘Linear filtering’, Mathematics of Computation, 29, (132), 1094-1097 (1975). 
9. M. Y. Hussaini, et al., ‘Spectral methods for the Euler equations. Part 1-Fourier methods and shock capturing’, A I A A  

10. H. G.  Paap, ‘Losung der Zweidimensionalen Navier-Stokes Gleichungen mit Hilfe randangepaoter Koordinaten’, 

11. G.  L. Lamb, Jr., Elements of Soliton Theory,  Wiley, 1980. Chapter 6. 
12. R. W. MacCormack, ‘A numerical method for solving the equations of compressible flow’, A I A A  19th Aerospuce 

13. W .  C. Thacker, ‘Irregular grid finite difference techniques: simulations of oscillations in shallow circular basins’, J .  

14. H. G.  Paap, J. Hauser, D. Eppel, ‘Automatic grid doubling for composite meches’, in Proceedings of the  Sixth G A M N  

Thomson (ed.) Numerical Grid Generation, North Holland, 1982, pp. 385-408. 

C. Taylor (ed.), Numerical Methods in Nonlinear Problems, Pineridge Press, 1983, pp. 826-836. 

boundary fitted coordinates’, In t .  numer. methodsfluids, 5, 727-744 (1985). 

dimensional fluid flow problems’. Part I: generation of BFGs, Int. j .  numer. methods.fluid.7, 6,  507-527 (1986). 

Thomson (ed.) Numerical Grid Generation, North Holland, 1982, pp. 409-436. 

Holland, 1982, pp. 31-40. 

Course on Numerical Grid Generation, Mississippi State University, 1984. 

Journal, 33, (l), 64-70 (1985). 

Diploma Thesis, Universitat Hamburg, 1984. 

Sciences Meeting, AIAA-81-OI10, 1981. 

Phys. Ocean., 7 ,  282-292 (1977). 

Conference on Numerical Methods in Fluid Mechanics, Vieweg and Sohn, Braunsohweig, 279-286, 1986. 




